Industria 4.0: crescono le richieste di manutenzione predittiva – askanews.it

Industria 4.0: crescono le richieste di manutenzione predittiva

Con i sensori IoT di Quick Algorithm -40% di fermi impianto imprevisti
Gen 18, 2024
Roma, 18 gen. – Il mercato della manutenzione predittiva è in pieno boom. Nel decennio 2010-2020, il numero di dispositivi industriali collegati tramite l’Internet of Things è salito da circa 800 milioni nel 2010 a 11,7 miliardi nel 2020 e si prevede possa raggiungere i 31 miliardi entro il 2025. Le aziende stanno passando dall’esecuzione di interventi di manutenzione preventivi o reattivi ad un approccio predittivo, basato sulla raccolta di dati in real time grazie alla presenza di sensori IoT sui macchinari.

In questo scenario si inserisce Quick Algorithm, startup deep tech italiana nata per democratizzare l’analisi avanzata dei dati e l’intelligenza artificiale in ambito industriale e commerciale, rendendo l’innovazione tecnologica accessibile a imprese e istituzioni. Quick Algorithm ha infatti sviluppato Scops.ai, una soluzione hardware e software Plug and Play di facile implementazione, attivabile in soli 20 minuti che, grazie alla combinazione di Sensori IoT e piattaforma di Intelligenza Artificiale, consente di raccogliere in tempo reale dati sui consumi energetici e le performance di macchinari ed edifici, garantendo una visione olistica delle condizioni operative e migliorando notevolmente l’accuratezza e l’efficacia della manutenzione predittiva.

In particolare, all’interno dell’ecosistema di Scops.ai arriva il nuovo sensore IoT, progettato per lo Smart Vibration Monitoring, che monitora in modo intelligente le vibrazioni di motori elettrici, ventilatori, pompe e riduttori permettendo un’analisi predittiva dello stato di salute delle macchine al fine di evitare guasti improvvisi, riducendo fino al 40% i fermi non previsti.

“Oggi le aziende hanno compreso il ruolo della manutenzione predittiva nelle loro strategie di efficientamento produttivo per scongiurare tempi di inattività che costano tra il 5 e il 20% della capacità produttiva di una fabbrica”, dichiara Jacopo Piana, CEO e Fondatore di Quick Algorithm. “L’adozione di tecnologie IoT consente di monitorare le vibrazioni dei macchinari in tempo reale e identificare possibili guasti e malfunzionamenti. Il nuovo sensore intelligente che abbiamo sviluppato consente di monitorare lo stato di salute di molti macchinari con una semplicità di implementazione unica e con caratteristiche tecniche innovative. Con Scops.ai sarà ora possibile monitorare asset critici per molti impianti come pompe, motori elettrici, nastri trasportatori e molto altro. In questo modo sarà possibile intervenire dove e quando necessario, riducendo i costi di fermo impianto e l’impatto ambientale dovuto a inefficienze e guasti.”.

Il monitoraggio delle vibrazioni con il nuovo sensore IoT di Scops.ai. Il nuovo sensore IoT di Quick Algorithm per lo Smart Vibration Monitoring è anch’esso Plug and Play, non necessita di cablaggio e consente di avere una pipeline di dati unica, tagliando costi operativi e tempi di attivazione. Il nuovo sensore, integrato con Scops.ai, è dotato di algoritmi che consentono di ricevere allerte su possibili malfunzionamenti. L’intelligenza del sistema Scops.ai permette di democratizzare l’adozione delle nuove tecnologie di manutenzione predittiva perché non richiede esperti di analisi dei dati, ma è il sistema stesso a generare allerte di malfunzionamento.

Questa tecnologia aiuta le aziende a monitorare le vibrazioni per individuare eventuali anomalie: l’operatività costante e gli stress cui sono sottoposte le attrezzature possono infatti provocare sbilanciamenti, disallineamenti e instabilità nella struttura della macchina, mettendone a rischio il loro funzionamento, oltre a causare l’usura precoce di componenti interni.Scops.ai può essere utilizzato anche nel monitoraggio di pompe, motori, nastri trasportatori e molto altro, per prevenire fermi di produzione grazie alla rilevazione tempestiva di anomalie nelle vibrazioni, o anche nella gestione dei ventilatori per il raffreddamento di stampi e zone a clima controllato, dove aiuta ad evitare surriscaldamenti e guasti. Nel caso di successo più recente, ad esempio, è stato possibile rilevare anticipatamente il malfunzionamento di una pompa che avrebbe causato il rallentamento della produzione in un’intera linea. In settori critici come quelli che richiedono refrigerazione, il sensore assicura un monitoraggio  efficiente, proteggendo l’integrità delle catene del freddo e altri processi essenziali.

La manutenzione predittiva come chiave per il futuro. Un fermo macchina imprevisto comporta un blocco della produzione più o meno significativo in base all’importanza critica dell’asset, in generale, tuttavia i costi associati a fermi impianto imprevisti sono enormi, con danni economici calcolati in quasi 1,5 trilioni di dollari per le aziende Fortune Global 500 (corrispondenti a circa l’11% del loro fatturato annuo).

Nel contesto industriale, per evitare questi danni economici, è importante prevenire malfunzionamenti dei macchinari, così da scongiurare fermi impianto, costi di manutenzione o riparazione, riduzione della produzione e difficoltà come l’approvvigionamento dei pezzi di ricambio, influenzabile dalla situazione geopolitica internazionale. Di conseguenza, la manutenzione riveste un ruolo cruciale. Eseguirla in modo tempestivo, attraverso interventi di manutenzione predittiva può influenzare significativamente i costi operativi e l’efficienza, rispetto alla manutenzione preventiva o, in caso di rottura, quella correttiva. Sempre più aziende scelgono l’approccio data driven dell’industria 4.0 integrando quindi l’approccio predittivo che consente di incrementare la produttività del 25% e limitare i costi relativi alla manutenzione del 25% grazie all’analisi dei dati dei macchinari tramite IoT e Intelligenza Artificiale.

“Alle aziende conviene dunque sfruttare appieno il potenziale dei dati raccolti in produzione e realizzare strategie vincenti di manutenzione predittiva grazie all’evoluzione tecnologica che rende possibile l’integrazione di sensori IoT sui macchinari, l’archiviazione dei dati in infrastrutture cloud e l’uso di software basati sull’intelligenza artificiale. Questa sinergia di tecnologie, offerta da Scops.ai in un’unica soluzione rapida e semplice da implementare, aiuta le imprese a navigare verso un auspicato e ininterrotto funzionamento delle proprie attrezzature, con interruzioni impreviste sempre più rare e gestibili”, conclude Jacopo Piana, CEO e Fondatore di Quick Algorithm.